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Highlights  Abstract  

▪ Fault diagnosis is necessary to ensure the 

electromechanical system's reliability. 

▪ Thermal imaging can be utilized to diagnose 

the induction motor state. 

▪ Explainability methods provide insights into 

decision-making process of neural algorithms. 

▪ Convolutional neural networks can efficiently 

operate on resource-constrained hardware. 

▪ There is no universal approach for deploying 

deep learning algorithms on edge devices. 

 Equipment condition monitoring is essential to maintain the reliability 

of the electromechanical systems. Recently topics related to fault 

diagnosis have attracted significant interest, rapidly evolving this 

research area. This study presents a non-invasive method for online 

state classification of a squirrel-cage induction motor. The solution 

utilizes thermal imaging for non-contact analysis of thermal changes in 

machinery. Moreover, used convolutional neural networks (CNNs) 

streamline extracting relevant features from data and malfunction 

distinction without defining strict rules. A wide range of neural 

networks was evaluated to explore the possibilities of the proposed 

approach and their outputs were verified using model interpretability 

methods. Besides, the top-performing architectures were optimized and 

deployed on resource-constrained hardware to examine the system's 

performance in operating conditions. Overall, the completed tests have 

confirmed that the proposed approach is feasible, provides accurate 

results, and successfully operates even when deployed on edge devices. 
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1. Introduction 

In modern industry, fault detection and diagnosis are critical 

for sustainable production systems. In recent years, with the 

expansion of Industry 4.0, predictive maintenance has become 

the dominant trend in manufacturing, focusing on applications 

for specific machines or industrial equipment [1]. In areas like 

mechanical power generation, transportation, or 

manufacturing, induction motors play a substantial role, 

generally applied in different types of pumps, fans, blowers, 

compressors, or conveyors. In the industrial setting, they are 

continuously exposed to various stresses that may cause 

unexpected faults in the induction motor elements. In the 

initial stage, these deteriorations are unnoticeable but 

eventually may result in catastrophic failure and high financial 

costs [7]. According to [37], an hour of downtime may vary 

from 39 thousand dollars in factories producing Fast Moving 

Consumer Goods to 2 million dollars in the automotive 

industry. In addition to financial damage, there is also the 

possibility of losing reputation and even customers [50]. 
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Therefore, the condition monitoring concept was introduced 

to lower repair-related expenses and minimize the probability 

of machinery downtime [33]. 

Nowadays, the most widely used strategies for anomaly 

detection in industrial applications based on induction motors 

are current signals analysis [31, 11] and mechanical vibration 

diagnosis [27, 10, 49]. They are commonly used and well-

explored techniques that provide good results. However, these 

approaches require direct access to device components and 

additional electrical and/or mechanical connection, which is 

not always possible due to the hard-to-reach location of the 

examined object. As another factor, one can mention 

exorbitant requirements related to computation resources and 

energy efficiency, which are essential for the real-time 

operation of algorithms [21]. Moreover, continuous 

monitoring, data storage, and processing costs might be 

significant, especially in an environment where many 

machines are running. In this case, external and non-invasive 

observation methods might be preferable, even considering 

the limitations caused by the lack of direct access to the 

analyzed equipment. The best-known contactless 

measurement method is imaging. Its basic form uses visible 

light range and represents it through 3 channels as RGB 

values. However, in industrial fields, particularly in equipment 

monitoring, infrared thermography (IRT) is a more popular 

technique. Thermal imaging allows the detection of thermal 

changes occurring in the machine and caused by equipment 

deterioration, environmental conditions, or human factors and 

comparison with the results to ones characteristic of normal 

operating conditions [52, 4]. Despite their constraints, such as 

low resolution and field of view, limited temperature range, 

limited measurement frequency, sensitivity to environmental 

factors, and calibration requirements when changing the 

operating environment, methods based on thermal imaging are 

more and more willingly applied in the equipment condition 

monitoring task. Their main advantages are lack of impact on 

the device under observation, monitoring efficiency, 

portability, and operational simplicity [13], making these 

techniques a good choice when a general analysis of active 

machine is sufficient and exact device parameters, as in the 

case of current or vibration measurements, are not required. 

Over the last few years, several works have employed 

thermal imaging for fault diagnosis tasks in induction motors 

and their external components. The first to be mentioned is 

[17], in which the authors focus on rotor imbalance and the 

bearings of rotating machinery. The approach uses two 

separate image-processing pipelines, first checks the rotor 

imbalance by differencing the consecutive images and 

extracting features from the obtained differential frame. The 

other is based on three characteristics - the standard deviation 

of the pixel values, a factor related to spatial temperature 

distribution, and the Gini coefficient, which distinguishes 

between one of the four bearing states. Overall, the pipelines 

use classic machine learning algorithms, support vector 

machine (SVM), or random decision forest (RDF), and 

achieve 88.25% accuracy. The authors of [40, 41] have chosen 

another solution to deal with inter-turn faults and cooling 

system failure. They monitor the trend of stator temperature 

rise and analyze thermal distribution in a motor's transient 

state. On this basis, the authors have determined the severity 

of the occurrence and proposed a segmentation method based 

on sophisticated temperature thresholding, useful for 

visualization of the machinery in a steady state. The authors of 

[18] have moved away from the feature extraction approach in 

favor of convolutional neural networks (CNNs). The proposed 

solution is based on two combined VGG models [39], for 

respectively spatial and temporal characteristics, and can 

distinguish between eight classes with 95% accuracy. Another 

method adopting convolutional neural networks to thermal 

image analysis is [23], whose authors tackle the bevel gearbox 

defects problem with correctness of nearly 100%. Authors of 

[22] compared several classification methods on two 

experimental, ten-class datasets involving bearing and rotor 

faults. The experiments have proven that convolutional neural 

networks outperform other algorithms, reaching accuracies of 

above 98% on both test sets. Karabacak et al. [19] presented  

a worm gear condition monitoring and fault detection method 

based on thermal images and modified GoogLeNet [43] 

architecture. Their collected dataset consists of four classes, 

which include three defect types: wear, pitting, and tooth 

breakage. The authors of the proposed algorithm declare  

a correct classification of all samples from the test set. Mian et 

al. [29] proposed a redundant multi-sensor pipeline for 

misalignment and unbalanced state diagnosis. The approach 
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based on vibration signals and infrared thermal imaging 

independently extracts features and classifies the condition of 

the induction motor. In the presented results, the vision part 

performs better and achieves perfect accuracy. Experiments 

presented in [35] allow distinguishing between four states of 

an induction motor: healthy condition, a broken rotor bar, 

bearing damage, and misalignment. This methodology takes 

meaningful statistical characteristics that represent the thermal 

behavior of the electromechanical system directly from the 

thermogram. Then, using linear discriminant analysis (LDA), 

the number of features is reduced and fed into a k-nearest 

neighbor (k-NN) classification algorithm, which flawlessly 

classifies them. In [14], authors focused on bearing faults, 

broken rotor bar defects, and stator failures. In their study, the 

grey-level co-occurrence matrices (GLCM) were adopted for 

the feature extraction process. Using the XGBoost classifier, 

the solution achieved 93% accuracy in evaluation. 

The works mentioned above focus on developing new 

algorithms or applying existing ones to collected data, 

completely ignoring aspects related to the implementation of 

the solution, its efficiency, deployment, or performance under 

target operating conditions. Only the [2] study introduces the 

concept of an intelligent sensor, the perception unit integrated 

directly with processing hardware. The authors combined  

a low-cost infrared sensor with a Raspberry Pi 4 tiny 

computer. This efficient and powerful edge device performs 

calculations on the platform without unnecessary data transfer 

to an external computing unit. In their processing pipeline, 

thermal images are upscaled ten times, and then for each 

initially defined region of interest, 15 statistical indicators are 

calculated. In the next step, these features are grouped in  

a matrix, and their dimensionality is reduced using principal 

component analysis (PCA). Finally, the reduced 

representation is given to the feed-forward neural network 

(FFNN), responsible for fault detection in the gearbox and 

rolling bearings. Although the authors of the aforementioned 

manuscript included the hardware implementation of the 

proposed solution in their study, it neither contains  

a comprehensive analysis of the device's performance 

capabilities nor a comparison of different classification 

methods. 

This paper presents a contactless, non-invasive fault 

diagnosis and state monitoring application for squirrel-cage 

induction motors. The proposed approach processes thermal 

images and decides whether the machine captured in the input 

frame belongs to the healthy class or represents one of the 

predefined damage types. The concept of this solution has  

a foundation in convolutional neural networks. Accordingly, 

various architectures were investigated to select the most 

suitable structure regarding metrics, efficiency, and 

performance. Considering that the designed method is 

intended for online, near real-time operation, mostly under 

changing conditions, selected neural models were optimized 

and deployed on resource-constrained hardware. This 

approach allows onboard computing without transmitting 

measurements to the server and waiting for a response. It 

significantly reduces operating costs because cloud instance is 

no longer necessary. Moreover, the device itself performs all 

calculations, so there are no issues related to communication 

with a server, and the designed module, due to its compact 

size, can be freely transferred between different locations. It 

makes the proposed method applicable not only in the 

controlled laboratory setting. Last but not least, to not treat the 

algorithm as a black box, layers and trained weights of the 

best-performing model were examined utilizing 

interpretability methods to verify the decision-making context 

and information taken into account when performing the 

predictions. Table 1 compares and summarizes studies 

considering the used IRT resolution, applied methodology, 

and hardware application. 

Sections in this article are organized as follows: Section 2 

describes the experimental setup used in experiments, the 

collected thermal image set, the methodology of the 

conducted research, and elements of hardware evaluation. 

Section 3 presents the achieved metrics and measured 

performance of architectures on edge devices. Additionally, 

this chapter pays attention to the interpretability of the results, 

demonstrating the outcomes of a range of explainability 

analysis algorithms applied to the developed models. Finally, 

Section 4 discusses the findings, whereas Section 5 

summarizes the work and outlines the possibilities for further 

research. 
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Tab. 1. Comparison of applications that use thermal diagnosis. 

Types of Faults IRT Resolution Method Hardware Application Article 

Bearing damage and rotor imbalance 640×480 SVM + RDF None [17] 

Inter-turn 320×240 
Temperature 

Thresholding 
None [40] 

Inter-turn and cooling system 320×240 
Temperature 

Thresholding 
None [41] 

Bearing 640×480 
Two combined 

VGG CNNs 

NVIDIA GeForce 

GTX TITAN X 
[18] 

Bevel gearbox 384×288 CNN None [23] 

Bearing and rotor 384×288 LeNet-5 None [22] 

Worm gear 160×120 GoogLeNet CNN None [19] 

Misalignment and unbalance detection 464×348 SVM None [29] 

Broken rotor bar, bearing damage, 

and misalignment 

320×240 

 
LDA + k-NN None [35] 

Bearings, broken rotor bar, and stator 80×60 GLCM + XGBoost None [14] 

Rolling bearings and gearbox 160×120 PCA + FFNN Raspberry Pi 4 [2] 

Broken rotor and misalignment 640×512 CNN Raspberry Pi 4B Proposed 

2. Material and methods 

This section describes the experimental setup used to simulate 

the potential states of the squirrel-cage induction motor and 

the gathered data utilized in the study. Moreover, this chapter 

includes a comprehensive description of the research 

methodology. In addition, the last subsection contains  

a detailed description of evaluation hardware and frameworks, 

which are a meaningful aspect of the proposed approach 

considering its potential applicability. 

2.1. Experimental Setup 

The performed experiments have been divided considering the 

type of fault. Therefore, in the experimental setup, three 

classes have been distinguished: 

● Healthy - an induction motor works correctly under 

normal operating conditions. 

● Misalignment - a shift had been added between shafts 

making them no longer parallel. 

● Broken Rotor - squirrel-cage rotor with broken cages. 

The presented research includes four varied 

misalignments, whereas, in the case of the broken rotor, three 

versions have been considered - with 1, 3, and 6 cages broken. 

All of the above configurations were tested with different 

levels of current load - starting with no load and ending with 

6A, with a 2A step. Additionally, to increase the diversity of 

data and introduce hardware variations, the examinations were 

conducted using several couplings.  

 

Fig. 1. The schematic diagram of the experimental test stand. 

All in all, the entire study contains 42 independent trials 

with different hardware setups and current loads. The 
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illustrative diagram of the test bench is depicted in Figure 1. 

Meanwhile, Table 2 contains detailed configurations of the 

experimental setup. 

Tab. 2. Configuration of examined Squirrel-Cage Induction 

Motor. 

Parameter Value 

Producer Celma Indukta 

Type Sh 90L-4 

Phase 3-phase 

Rated power 1.5 kW 

Input current 6.1 / 3.5 A 

Rated voltage 230 / 400 V 

Rated frequency 50 Hz 

Efficiency 79% 

Speed 1410 RPM 

Shaft diameter 24 mm 

2.2. Dataset 

In accordance with Figure 1, the operation of the system was 

registered using Workswell InfraRed Camera (WIC) [54]. It is 

a highly accurate sensor, with thermal sensitivity of up to 

≤0.03°C, designed for industrial inspections and R&D 

applications. In this study, WIC 640 thermal camera was 

utilized. It has 640×512px resolution, and the detailed 

specification is presented in Table 3. Images were captured in 

series lasting about 30 seconds, with an average of four 

frames per second, which results in approximately 120 unique 

images per experiment. The collected data, 5653 frames in 

total, were grouped into three classes corresponding to the 

induction motor state or damage and then randomly divided 

into five folds to perform cross-validation in the next stage. 

The dataset distribution is presented in Table 4, whereas 

Figure 2 shows sample thermal frames from the collected 

image set, respectively a healthy system, test with added 

misalignment, and instance with a broken rotor. In addition, 

Table 5 presents measured temperature ranges for respective 

classes from the dataset. Figure 3 depicts the temperature 

distribution for each experiment. The presented values from 

conducted trials were clustered to highlight the differences 

between groups, for example, due to different couplings or by 

increasing the shift between shafts in subsequent trials. 

Tab. 3. Thermal camera specification. 

Parameter Value 

Manufacturer Workswell 

Image resolution 640×512 

Frame rate 4 FPS 

Temperature measurement 

range 
-40°C — +550°C 

Thermal sensitivity 0.03°C 

Tab. 4. Dataset distribution for 5-fold cross-validation. 

 Fold  

Class 0 1 2 3 4 Total 

Healthy 186 879 560 306 313 2244 

Misalignment 311 314 417 381 376 1799 

Broken Rotor 335 502 211 279 283 1610 

 

 

Fig. 2. Sample thermal images captured by Workswell WIC 640 InfraRed Camera in experiments with 4A current load. (left) 

properly functioning system; (center) misalignment between two shafts; (right) motor with a broken rotor. 
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Tab. 5. Registered temperature ranges for individual classes. 

Class Min Value Max Value Mean Value Standard Deviation 

Healthy 23.00°C 82.43°C 38.62°C 8.86°C 

Misalignment 25.52°C 104.99°C 40.31°C 12.04°C 

Broken Rotor 24.86°C 83.30°C 41.24°C 11.09°C 

 

Fig. 3. Registered temperature ranges for individual experiments.

2.3. Methodology 

In most cases, stopping the running machinery for 

inspection is not an option, especially in industrial 

applications. Moreover, induction motors are often in places 

where direct access is impossible or highly limited. Therefore, 

the presented work focuses on a contactless, non-invasive 

solution that allows near real-time measurement and on-

device analysis using edge devices. As a starting point, PP-

LCNet [6] was chosen due to its high efficiency on CPU-

based hardware. Additionally, the MNASNet [44] in the 

variant with Squeeze-and-Excitation (SEMNASNet), in three 

variants, was taken into account. ResNet18 and ResNet34 [12] 

were considered for their generalization capabilities, proven in 

a wide range of computer vision applications [56, 25, 32]. 

Along with them, ResNet10 [8] architecture was included. It 

is tailored to resource-constrained platforms with low 

computing power, using 10 instead of 18 residual layers and 

owing ten times fewer parameters than ResNet18. Another 

choice was EfficientNet [46] in versions B0-B2. Unlike 

conventional architectures, these models uniformly scale all 

network dimensions - width, depth, and resolution. This 

approach allows for achieving good performance in terms of 

accuracy while maintaining high performance. The last 

architecture selected for evaluation is MixNet [45], in the 

smallest one, the S option. This architecture utilizes a variety 

of layers called MixConv, which combine multiple, different 

size kernels into a single depthwise convolution operation, 

enhancing the process of feature extraction from the input. 

The MixNet structure starts with small kernels to save 

computational cost and gradually increases their size to 

improve final accuracy. This approach allows taking 

advantage of large kernel sizes, and picking up high-

resolution patterns, without accuracy and efficiency 

deterioration. The discussed network architectures were 

implemented utilizing the PyTorch Image Models library [53], 

and the whole training pipeline was prepared using PyTorch 

[47] package. 

In the proposed process, thermal images were a single-

channel input to the convolutional neural networks with 

unchanged image resolution. The only preprocessing steps 

used were conversion from 16-bit unsigned integer format to 

32-bit floating-point data type, followed by min-max scaling 

to the 0-1 range. Figure 4 illustrates the flow chart of the 

designed approach.
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Fig. 4. Developed pipeline for the state classification of a squirrel-cage induction motor.

The dataset has been randomly split into five folds to 

perform cross-validation. For every split, three folds were 

concatenated and marked as the training set, and the other two 

were used respectively as validation and test set. As an 

optimizer, AdamW [26] was selected due to its computational 

efficiency, simplicity of configuration, and use of decoupled 

weight decay instead of L2 regularization, which results in 

substantially better generalization performance. The initial 

learning rate was set to 3e-5. Since the problem is a 3-class 

classification, cross-entropy was chosen as a loss function. 

The batch size was set depending on architecture size and 

number of parameters, respectively 16 for simpler ones and 8 

for more complex ones. The maximum number of epochs was 

300. However, the early stopping callback, with patience 

equal to 10, was employed to monitor changes in the loss 

function on the validation set and stop training if there is no 

improvement. The NVIDIA TITAN Xp GPU with 12 GB 

memory and CUDA 11.8 was configured for all experiments. 

2.4. Evaluation Hardware and Frameworks 

Considering the potential application of the proposed method, 

the neural network architectures described in Section 2.3 were 

optimized, quantized, deployed, and benchmarked on 

resource-constrained hardware. The following edge devices 

were selected for this comparison due to their recognition and 

common use in IoT applications, market availability, as well 

as producer and community support: 

● Raspberry Pi 4B (RPi) [48] is the most used single-

board computer with a quad-core ARM Cortex A72 

processor. The board had 2GB of RAM and a 64-bit 

operating system in the experimental setup. This 

device is a good representation of modern low-

power, small-size embedded computer performance. 

● Intel Neural Compute Stick 2 (NCS2) [15] is a 

deep learning algorithms accelerator. It is a small, 

fanless USB module designed for IoT or robotics 

applications, especially employing computer vision 

models. The device's high performance is owed to 16 

efficient SHAVE (streaming hybrid architecture 

vector engine) VLIW cores (very long instruction 

word), and  

a dedicated hardware neural accelerator, which is the 

leading part of the module. This chip is named Intel 

Movidius Myriad X Vision Processing Unit (VPU) 

and clocked at 700 MHz base frequency. The NCS2 

is supported directly by the Intel OpenVINO toolkit, 

developed to optimize, deploy, and infer deep 

learning models, specifically convolutional neural 

networks. The Intel Movidius Myriad X VPU 

supports solely floating-point operations. Therefore, 

executed models can have float 32 or float 16 data 

format. In our application, the accelerator is a USB 

coprocessor and requires a host device running an 

operating system, e.g., a Raspberry Pi. 

A detailed description of tools, libraries, and frameworks 

facilitating optimization, acceleration of computing, and 

inference on the hardware used in the analysis is shown 

below, whereas a brief comparison is given in Table 6. 

● OpenVINO [16] is an open-source set of tools 

designed and supported by Intel to optimize and 

deploy AI algorithms on Intel-manufactured 

hardware, ranging from edge devices to cloud 

centers. The toolkit was developed to deal with a 

wide range of hardware, such as central processing 
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units, graphics processing units, vision processing 

units, and field-programmable gate arrays. 

OpenVINO aims to boost the performance of 

algorithms in computer vision, natural language 

processing, and automatic speech recognition 

applications. The principal advantage of the toolkit is 

the possibility to convert neural networks from one 

of the mainstream deep learning frameworks such as, 

e.g., ONNX, TensorFlow to the Intermediate 

Representation format and then use this model 

among all supported platforms without significant 

code changes. 

● tflite-runtime (TF Lite) [9] is a high-performance 

package designed for on-device machine learning 

algorithms inference and intended for mobile, 

embedded, and even IoT devices. The library utilizes 

models in the TensorFlow Lite FlatBuffers format, 

which is efficient, portable, and supported by several 

programming languages. This format is available 

directly through conversion from TensorFlow, and by 

additional optimization and quantization, aspects 

such as latency, size, and power consumption can be 

improved. 

● PyArmNN [3] is an official Python binding for Arm 

NN - a machine-learning inference engine for 

Android and Linux platforms. The package 

accelerates computations on ARM Mali GPUs and 

CPUs from the Cortex-A family. In benchmarks, the 

Arm NN outperforms generic runtime libraries using 

architecture-tailored optimizations from Arm 

Compute Library. Arm NN inference engine supports 

TF Lite models through TF Lite Delegate. 

ONNX Runtime [30] is an inference framework linking 

various libraries, which supports hardware acceleration on 

diverse platforms. This package simplifies the usage of deep 

learning models in the ONNX format, offering a standardized 

way of model loading, allowing, at the same time, the use of 

one of the numerous execution providers created to maximize 

the performance of the computing environment. The main 

advantage of ONNX Runtime is the high portability of the 

designed approach and benefiting from integrated access to 

stand-alone tools like e.g., OpenVINO 

Tab. 6. Brief overview of utilized inference packages. 

Framework Version Utilized Hardware 

OpenVINO 2022.1 Intel NCS2 

tflite-runtime 2.11.0 RPi CPU 

PyArmNN 32.0.0 RPi CPU 

ONNX Runtime 1.14.1 
RPi CPU / Intel 

NCS2 

 

Fig. 5. Model conversion pipeline. 

In order to convert the developed neural network 

architectures from the PyTorch format used in the 

experimental environment to the suitable form supported by 

the inference frameworks, it was necessary to perform several 

actions. The base models were exported to the ONNX and 

then to TensorFlow Lite and OpenVINO. OpenVINO 

instances were optimized and quantized directly from the 

ONNX file, whereas TF Lite requires conversion via 

TensorFlow. Additionally, weights and activations of final 

models were quantized to 16-bit floating point format and 8-

bit integer data representation. Figure 5 depicts the 

transformation pipeline. 

3. Results 

In the proposed approach, the state of the squirrel-cage 

induction motor could be classified into one of three 

categories: healthy, misalignment, and broken rotor. In the 

training phase, for research purposes, the 5-fold cross-

validation was added to increase the reliability of the neural 

algorithms, calculating statistics individually for every split. 

As evaluation metrics for classification models, the accuracy 

(1), f1 score (2), precision (3), and recall (4) metrics have 

been selected. Their equations in baseline representations are 

as follows: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 +  𝐹𝑁 +  𝑇𝑁 +  𝐹𝑃
 (1) 

𝐹1𝑆𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁
 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 (4) 

where TP, FN, TN, and FP refer directly to elements of the 

commonly used confusion matrix and denote, as follows, true 

positive, false negative, false positive, and true negative. The 

true positive and true negative describes correctly classified 

positive and negative samples. False positive represents  

a situation when output indicates the presence of a condition, 

whereas false negative incorrectly signifies its absence. 

Considering the presented research problem is a multiclass 

classification and the distribution of samples in folds is not 

balanced, the weighted average has been applied after 

calculating statistics for each label. The final metric from the 

folds' results was obtained using the standard mean. Table 7 

presents the achieved results of 5-fold cross-validation for 

benchmarked neural architectures. 

The growing popularity of methods based on deep neural 

networks, paired with increasing model complexity, results in  

a deepening lack of operational transparency. In safety-critical 

applications, such as healthcare, autonomous driving, or 

industry, using solutions of a black-box nature may not be an 

option. Therefore, in recent years, model explainability 

techniques have become increasingly meaningful, while 

verification of neural networks has become a crucial part of 

the development process [24, 5]. The presented case is no 

different. To get more insights into the mode's operation, 

instead of treating it as a black box, the best-performing 

model from Table 7, EfficientNet B1, was examined with the 

interpretability methods from Captum [20] library. The 

following methods have been selected: Occlusion [55], Grad-

CAM [36], Deconvolution [28], GuidedBackpropagation [42], 

and Saliency Map [38]. Figure 6 includes the output of 

explainability methods obtained on sample thermal images 

from the gathered dataset.

 

Tab. 7. Average metrics achieved for benchmarked neural network architectures in 5-fold cross-validation. 

Model Architecture Accuracy F1 Score Precision Recall 

PP-LCNet 50 0.924 ± 0.078 0.939 ± 0.066 0.979 ± 0.045 0.924 ± 0.078 

PP-LCNet 75 0.920 ± 0.096 0.928 ± 0.086 0.954 ± 0.072 0.920 ± 0.096 

PP-LCNet 100 0.880 ± 0.102 0.892 ± 0.088 0.930 ± 0.053 0.880 ± 0.102 

SEMNASNet 50 0.901 ± 0.091 0.920 ± 0.080 0.964 ± 0.075 0.901 ± 0.091 

SEMNASNet 75 0.913 ± 0.054 0.935 ± 0.045 0.979 ± 0.043 0.913 ± 0.054 

SEMNASNet 100 0.878 ± 0.108 0.911 ± 0.071 0.978 ± 0.043 0.878 ± 0.108 

ResNet10t 0.831 ± 0.167 0.866 ± 0.136 0.952 ± 0.076 0.831 ± 0.167 

ResNet18 0.850 ± 0.172 0.879 ± 0.136 0.960 ± 0.061 0.850 ± 0.172 

ResNet34 0.925 ± 0.093 0.929 ± 0.086 0.957 ± 0.061 0.925 ± 0.093 

EfficientNet B0 0.896 ± 0.141 0.907 ± 0.131 0.946 ± 0.078 0.896 ± 0.141 

EfficientNet B1 0.932 ± 0.086 0.941 ± 0.076 0.969 ± 0.046 0.932 ± 0.086 

EfficientNet B2 0.854 ± 0.137 0.864 ± 0.129 0.899 ± 0.103 0.854 ± 0.137 

MixNet S 0.904 ± 0.088 0.916 ± 0.077 0.947 ± 0.050 0.904 ± 0.088 
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The primary advantage of explainability methods is the 

ability to transparently identify features and regions of interest 

in the image that impact the final predictions made by the 

neural network. According to all presented algorithms in 

Figure 6, the main contribution to the misalignment class has 

an area representing the induction motor. This observation has 

its reflection in measured temperatures in thermal images, 

depicted in Figure 3, which were significantly higher 

compared to others. Regarding samples representing broken 

rotor bar class, the wires of the load device catch attention, as 

well as the upper right part of the induction motor. In the case 

of healthy data, methods point out the contours and edges of 

the operating test stand, both the squirrel-cage induction 

motor and the loading device. Overall, all listed approaches 

turned out to be helpful in the process of understanding the 

decision-making context of the neural classifier. They confirm 

that the utilized algorithm extracts key features from thermal 

images by focusing entirely on the testbed and ignoring the 

surrounding background. Such a finding leads to an 

assumption that the presented approach is robust enough to 

work in varying industrial conditions and does not make 

decisions based on spurious correlations. 

In addition to the presented results and employed 

interpretability algorithms, and due to the potential use of the 

proposed approach in online, near real-time applications 

directly under working conditions, performance benchmarks 

on edge devices were carried out. As a primary device, the 

Raspberry Pi 4B was selected, and to explore further 

possibilities for increasing the throughput, an external co-

processor, Intel NCS2, was added. A detailed description of 

evaluation hardware and frameworks is given in Section 2.4, 

whereas Table 8 contains measured results.

 

Tab. 8. Average inference time, in seconds, measured on evaluation hardware. The abbreviations FP32, FP16, and INT8 used in the 

table describe the format of the model's weights and parameters: 32-bit floating point, 16-bit floating point, and 8-bit integer. The 

following error codes are marked in the table: 1* - Encountered unresolved custom op: PyFunc;  2* - Aborted; 3* - Operator not 

supported; 4* - Unsupported operation HardSwish. 

Model 

Architecture 
TF Lite FP32 TF Lite FP16 TF Lite INT8 

PyArmNN 

INT8 

ONNX 

Runtime 

CPU FP32 

ONNX 

Runtime 

MYRIAD FP16 

OpenVINO 

MYRIAD 

FP16 

PP-LCNet 50 0.336 ± 0.006 0.323 ± 0.005 0.228 ± 0.002 0.156 ± 0.003 0.156 ± 0.006 4* 4* 

PP-LCNet 75 0.561 ± 0.009 0.560 ± 0.007 0.399 ± 0.003 0.292 ± 0.004 0.253 ± 0.007 4* 4* 

PP-LCNet 100 0.764 ± 0.011 0.787 ± 0.009 0.581 ± 0.005 0.513 ± 0.014 0.353 ± 0.008 4* 4* 

SEMNASNet 50 0.493 ± 0.009 0.449 ± 0.008 0.363 ± 0.002 0.485 ± 0.025 0.278 ± 0.113 0.084 ± 0.001 0.083 ± 0.001 

SEMNASNet 75 0.927 ± 0.050 0.853 ± 0.009 0.745 ± 0.002 1.023 ± 0.016 0.438 ± 0.026 0.125 ± 0.001 0.125 ± 0.001 

SEMNASNet 100 1.083 ± 0.017 1.050 ± 0.009 0.852 ± 0.007 1.102 ± 0.018 0.524 ± 0.025 0.143 ± 0.002 0.142 ± 0.001 

ResNet10t 1* 1* 1* 1* 0.696 ± 0.035 0.127 ± 0.001 0.127 ± 0.001 

ResNet18 1.725 ± 0.045 2.749 ± 0.021 2* 1.429 ± 0.070 0.954 ± 0.030 0.162 ± 0.002 0.161 ± 0.001 

ResNet34 3.204 ± 0.018 5.511 ± 0.027 2* 2.167 ± 0.102 2.216 ± 0.134 0.274 ± 0.001 0.274 ± 0.001 

EfficientNet B0 1.790 ± 0.029 1.722 ± 0.026 1.386 ± 0.006 1.577 ± 0.130 0.984 ± 0.046 0.314 ± 0.001 0.313 ± 0.002 

EfficientNet B1 2.478 ± 0.030 2.487 ± 0.021 1.916 ± 0.004 2.427 ± 0.166 1.313 ± 0.041 0.456 ± 0.002 0.455 ± 0.002 

EfficientNet B2 2.493 ± 0.047 2.635 ± 0.039 2.051 ± 0.008 2.135 ± 0.184 1.377 ± 0.034 0.492 ± 0.002 0.491 ± 0.002 

MixNet S 1.718 ± 0.061 2.109 ± 0.032 1.150 ± 0.024 3* 0.881 ± 0.021 0.239 ± 0.001 0.238 ± 0.001 
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Fig. 6. Visualization of explainability methods applied to the samples from the collected dataset.  
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As shown in Figure 5, TensorFlow models, optimized for 

mobile and embedded inference, were quantized to three data 

representations: 32-bit and 16-bit floating-point and 8-bit 

signed integer format. The tflite-runtime library was used for 

inferencing. Models with INT8 data format were additionally 

evaluated using PyArmNN, a Python language binding for the 

Arm NN package. Meanwhile, a different model format is 

utilized by the ONNX Runtime package. It requires, by 

design, neural networks in ONNX representation. The 

inference library optimizes and quantizes models directly 

during loading by employing hardware acceleration providers. 

With this approach, it was straightforward to check both CPU-

based Raspberry Pi 4B and an external accelerator, like Intel 

NCS2, without significant changes in the test source code. In 

addition, to maximize the performance of the co-processor 

and examine the magnitude of the deceleration related to the 

utilization of the ONNX Runtime library, the OpenVINO 

toolkit, with a tailored optimization pipeline and inference 

engine, was used directly. Figure 7 illustrates the comparison 

between examined architectures in terms of obtained 

accuracy, the number of model parameters, and measured 

inference time on Raspberry Pi 4B CPU with ONNX Runtime 

framework. From this graph, it is clear that smaller models are 

processed much faster due to fewer parameters, but despite 

this fact, they achieve as good results as larger models. 

Moreover, the group of more complex architectures tends to 

perform worse due to overfitting to the training set caused by 

excessive learning capacity compared to the complexity of the 

task and data. 

 

 

Fig. 7. Comparison of models in terms of achieved accuracy, measured inference time on CPU with ONNX Runtime framework, and 

the number of parameters. Light gray circles symbolize the number of model parameters in millions.

4. Discussion 

The study compares state-of-the-art convolutional neural 

network architectures utilized in a squirrel-cage induction 

motor's condition monitoring task. The conducted 

examinations include three classes with samples produced 

under various states and configurations. According to Table 7, 

EfficientNet B1 turned out to be the best-performing 

architecture, achieving an average accuracy of 93%, with the 

lowest standard deviation among folds compared to other 

models. 

Moreover, the interpretability techniques, depicted in 

Figure 6, helped decode the convolutional neural network 

hidden under the black box term. The employed methods 

proved that the presented algorithm focuses on the area 
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referring to the induction motor and its components. Shafts 

that are not properly aligned can cause friction increase, 

which correlates directly to higher power consumption as the 

machines are less efficient. Ultimately, it translates into a 

temperature rise within a housing, in the coupling and 

bearings [51]. The used explainability algorithms clearly 

depict that the machinery temperature notably increases along 

with the occurrence of misalignment. On the other hand, 

healthy rotor bars close to broken rotor bars carry additional 

current resulting in asymmetrical overheating in the rotor 

cages [34]. This fault is characterized by the presence of hot 

spots on the housing, which, with further propagation of the 

defect, causes thermal bending of the rotor and results in a 

significant decrease in the reliability of the drive system. 

In addition, the proposed solution was successfully 

evaluated on edge devices showing its ability to operate under 

time constraints. Moreover, the approach demonstrates its 

feasibility for industrial applications through the practical use 

of the presented method, along with the hardware 

implementation, and not just an evaluation of the algorithms. 

According to the provided results in Table 8, the ONNX 

Runtime framework has proved to be the most efficient option 

for CPU-based processing on Raspberry Pi 4B. On the other 

hand, if additional computing power is needed or the 

application requires a higher time regime, the Intel NCS2 co-

processor will be a good choice. Carried-out experiments have 

shown that utilization of ONNX Runtime with MYRIAD 

FP16 provider, built on the top of the OpenVINO toolkit, at 

least gives three times better performance than CPU-based 

computation. It is worth noting that the time difference 

between the performance of a plain OpenVINO model and 

one invoked using ONNX Runtime is negligible. 

Compared to other applications summarized in Table 1, the 

proposed approach offers a significant advantage in induction 

motor fault diagnosis by thermal image analysis. The 

presented method is contactless and does not require 

additional modification of the existing electromechanical 

system setup. Moreover, unlike previously presented 

diagnostics solutions based on machine learning, it is well 

suited for deployment using edge processing devices, which 

was verified in a series of experiments. By efficiently 

processing higher-resolution thermal images, it is possible to 

extract finer details and more precise thermal characteristics 

of the object under study. This advantage is particularly 

valuable in equipment condition monitoring applications, 

where accurate fault diagnosis is critical to ensure operational 

efficiency and prevent costly failures. What distinguishes this 

research is the comprehensive evaluation of classification 

models, focusing on leading neural network architectures. 

This comparison allows identifying the most suitable model 

for the task, leading to improved accuracy and performance. 

The selected models have been specifically optimized for 

operation on edge devices with low latency, enabling real-time 

analysis and immediate response in time-critical scenarios. In 

addition, the proposed solution has undergone a thorough 

hardware evaluation, ensuring its compatibility and readiness 

for implementation in real-world operating conditions. Factors 

like computational efficiency, latency, model size, and system 

stability have been carefully assessed to verify seamless 

operation (Fig. 7). This not only enhances the practicality of 

the solution but also streamlines its implementation and 

adoption in various industrial settings. Moreover, the 

incorporation of state-of-the-art interpretability methods (Fig. 

6) allows for reliable verification and confirmation of the 

effectiveness of the employed neural networks. By providing 

insights into the decision-making process of the models, these 

methods enhance trust and understanding, making the 

proposed approach more robust and transparent. 

5. Conclusions 

The presented fault diagnosis method allows contactless, non-

invasive induction motor monitoring, which is the main 

advantage over conventional methods based on current or 

vibration analysis. It effectively processes thermal images 

extracting essential information for classification. The 

collected dataset includes samples from 42 independent 

experiments, which differ in configuration, load, and 

components. Obtained results show potential in the squirrel-

cage induction motor's state classifying task. All selected 

models perform well, with EfficientNet B1 architecture 

achieving the highest metrics. Also, this model was verified 

using interpretability methods confirming that its attention 

focuses on the relevant parts of the image - the test stand and 

examined motor, rather than surrounding elements in the 
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background. Nevertheless, it should be taken into account that 

thermal imaging characterizes higher measurement 

uncertainties compared to current or vibration readings due to 

its high sensitivity to environmental factors such as 

temperature or humidity. It would be necessary to calibrate 

thermal camera parameters every time the working 

environment changes noticeably to minimize the above 

limitations and maximize performance. 

What sets this publication apart is an extensive 

performance benchmark of the proposed solution on resource-

constrained hardware. The conducted tests have proven that 

the selected neural architectures, with appropriate 

optimizations, such as weights quantization and hardware 

acceleration, can be efficiently processed on low-cost devices 

like Raspberry Pi 4B or Intel NCS2 if more computing power 

is needed. Moreover, the examinations have shown that 

ONNX Runtime, an inference library, is the most suitable 

choice for on-device neural network processing due to its 

portability and the numerous selections of hardware 

acceleration providers. 

The research will further focus on extending and 

diversifying the dataset. The new thermal frames will be 

gathered from various workstations, under different 

environments and working conditions, including other 

induction motor types and models. Additionally, future work 

will include the development of a complete prototype with  

a thermal camera as a perception sensor, an edge device as  

a computing module, and with results visualization unit. 

These components will allow for fully  

practical use of the system in hard-to-reach areas without 

affecting the operation of the drive system.
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